

Some Thoughts on Better Software

By Sascha Frick, empros gmbh

Some Thoughts On Better Software

Contents
Developing Software is Hard __ 3

Programmers are Nerds __ 3

The Heart of Software ___ 3

Developing Software is an On-Going Process ____________________________________ 4

Successful Collaborations __ 5

Tracer Bullet Development ___ 5

User-Centered Interaction Design__ 6

Domain-Driven Design and Domain-Specific Languages ___________________________ 7

In parting… ___ 9

Resources ___ 9

Revision History
03.09.2005 Revision 1.0 sf

by Sascha Frick © 2005 empros gmbh – all rights reserved. 2 of 9

Some Thoughts On Better Software

Developing Software is Hard

T oday, writing a runable program is
easy – developing software on the
other hand is extremely challenging,

despite all the progress of recent years in
languages, design patterns, tools,
technologies and processes. Still, overrun
budgets, high defect rates, difficult to use
applications, security holes and dissatisfied
users plague our industry more than 20
years after the first software crisis has been
proclaimed. So what does it take to change
this, how can we get out of this mess?

In this paper, I will try to find some
answers to the question, how we can
improve the way software is developed and
how we can devise better software. To
make it clear from the beginning: For me,
the answer is not one of better tools or
processes. I firmly believe that most of the
tools and processes we need to achieve
better software are available today, what’s
really missing is the right attitude. We
have to understand that software

development (SD) is a collaborative effort
of solving complex problems. To be
successful, we need skilled and dedicated
people, a trusting and supportive
environment that fosters constant learning
and that allows for an open
communication. But we also need to shift
our focus away from efficiency towards
effectiveness. To put it mildly, our industry
got a little carried away with efficiency,
almost completely forgetting the simple
truth that solving the right problem
effectively is more important than solving
some problem efficiently. It is more
important to know the right problem than
having a right solution. If we know the
right problem, we stand a chance of
finding an appropriate solution. Only by
solving the relevant problems, can we hope
to find elegant solutions that are as simple
as possible but not simpler, solutions that
benefit their users by helping them achieve
their goals.

Programmers are Nerds

L et’s come back to the point of
software being a collaborative
effort. Many people imagine

software developers as technic-savvy,
ingenious but introverted geeks who are a
little engrossed and slightly removed from
reality. And of course, they all wear cool t-
shirts, refuse to drink coffee from anything
but a mug adorned with the logo of their

favorite tool or programming language,
and their diet almost exclusively consists
of pizza and soft-drinks. They are not very
talkative and rather like to hide behind
their screens and keyboards. Whether this
stereotype is accurate, there is a grain of
truth to it: most software developers rather
focus on technical aspects than the
intricacies of a specific problem domain.

The Heart of Software

A s Eric Evans observes: “The heart
of software is its ability to solve
domain-related problems for its

user. All other features, vital though they
may be, support this basic purpose.”
Software must help the user to achieve his

or her goals, it must provide value. Of
course, software developers know this, but
all too often, they get carried away doing
technical stuff: they go on to work on
elaborate frameworks, trying to solve
domain problems with technology. To a

by Sascha Frick © 2005 empros gmbh – all rights reserved. 3 of 9

Some Thoughts On Better Software

certain degree, this is understandable;
working on the business logic of a complex
domain is difficult, and some even wonder,
why they call it business logic in the first
place, when there are so many conflicting
rules, and quite often logic seems to be
completely absent.

Solving complex domain problems is
difficult, calling for the dedicated effort of
talented and skilled people. Developers
must hone and cultivate their domain
modeling and technical skills alike. They
have to become sensitive to domain
problems, empathic to the user and his or
her needs and finally masters of multi-level
communication; a communication that
ranges from talking to and learning from
domain experts, to shaping supple designs
and clear cut intention revealing
abstractions in code. Lest we ever forget
that software developers are first class
problem solvers, it is their job to tackle the
complexity at the heart of a problem
domain and it’s their job to find a clear,
simple and concise solution in software.

Don’t get this wrong: emphasizing the
importance of the problem domain, does
by no means imply that technical expertise
is not important. The opposite is true:
technical skill is absolutely necessary for
any software developer. A thorough
understanding of design patterns and
principles, algorithms and the
programming language in use are a must
have, you simply cannot be successful
without it. So, software developers, who
are still having trouble implementing an
Observer or Visitor from the top of their
heads, or who are still thinking the DRY-
principle refers to alcoholic beverages and
information hiding is about privacy in their
e-mail communication, should definitely
think about either getting educated or
finding a new job. And while we are at it:
No development process can compensate
for lack of skill, knowledge and dedication;
no process can make average or below-
average people become outstanding.

Developing Software is an On-Going Process

B etter software helps users achieve
their goals. All requirements
should therefore be goal-driven.

And since goals change, we should expect
our software to change as well. Developing
software is an on-going process, a learning
experience that never stops. Software
should be an asset that can be easily
changed to always offer value to its user in
the best possible way. Software is never
finished, merely fitting a purpose. So

developing better software is an attitude of
“good-enough” that strives for excellence
not by aspiring some mystic form of
perfection, but by providing concrete value
in given circumstances. Therefore, better
software is an attitude, a specific way to
look at SD: It’s about change,
collaboration and problem solving based
on explorative learning.

by Sascha Frick © 2005 empros gmbh – all rights reserved. 4 of 9

Some Thoughts On Better Software

Successful Collaborations
“Successful collaborations are dreams with deadlines.”
- Bennis & Biedermann

“When we set out to write software, we never know enough.”
- Eric Evans

D

omain experts and software
developers must actively work
together to add value; they must

engage in successful collaborations, they
must speculate and learn from each other
and their mistakes. They must build trust
and support; they must learn to welcome
the fact that planning in a complex
environment is speculation and that
following a plan at best produces the
results you intended, but just not the
product you need. Solving complex
problems means accepting the fact that
deviations from plan are not mistakes that
must be corrected but guides towards the
correct solution. Solving complex
problems needs rigor and discipline, but it
also requires the courage to deviate and
make mistakes; problem solving is iterative
and incremental.

Doing it right the first time simply doesn’t
cut it for complex tasks. Developing
software that provides value usually
requires solving complex problems.
Developing better software for a new
problem domain is always risky; it is an
exploration into the unknown. If you can’t
afford to take risks, don’t embark on that
journey, better stay home and hope for
someone else to do the job. But if you have
the guts, you must be willing to get it
wrong the first time in order to get it right
the last time; you must be willing to take
risks. By aiming at doing it right the last
time, you can actively manage risk, you
can acknowledge uncertainty, you can
allow for experiments, you can worship
error as an opportunity for learning, you
can expect to deviate from plan and let
deviations guide you toward the right
solution.

Tracer Bullet Development
“Ready, fire, aim…”
- Hunt & Thomas

O

ne way to support this sort of
concentrated successful
collaboration is Tracer Bullet

Development (TBD). The idea of Tracer
Bullets was first introduced by Hunt &
Thomas in their landmark book “The
Pragmatic Programmer”: When firing a
machine gun in the dark, tracer bullets are
a very effective means to find out if you hit

the target. When a tracer bullet is fired it
leaves a pyrotechnic trail from the gun to
whatever it hits. If the tracer hits the target,
then so do the regular bullets. Of course,
you could also do various calculations in
order to find out, where your target is. And
if you have made no mistakes and the
circumstances haven’t changed between
the time you started the calculations and

by Sascha Frick © 2005 empros gmbh – all rights reserved. 5 of 9

Some Thoughts On Better Software

the time you actually aim and fire, you my
even hit the target. Using a tracer bullet is
the preferred way to aim in the dark, since
it is easy, cost-effective and provides
immediate feedback. TBD allows us to
write code that glows in the dark.

TBD doesn’t try to change the way you
work; it wraps around the way you are
already working. This is important, since
any process must fit your team and
environment. TBD is very light-weight, it
doesn’t prevent any best-practice from
being used, being as non-invasive as it can
be. TBD allows you to create an end-to-
end system as quickly as possible, so you
can have early and constant feedback on
where you are and where you are going. It
ideally supports the adaptive cycle of
speculation, collaboration and learning. At
first, all the components of your systems
are merely hollow objects: you write code
for the major parts of your system, but the
objects aren’t doing any work.

While a detailed description of TBD is
beyond the scope of this paper, let’s briefly
look at the key elements of this approach:

You start by identifying the major parts of
your system, and divide your product into

blocks of related functionality, the so
called system objects. Then you flesh out
the interfaces that are needed for the blocks
to interact with each other. Of course, you
don’t expect to get it right the first time.
Now write just enough code to make
everything look as if it works. Basically,
you are writing an entire application of
mock objects. With this thin, skeletal
framework in mind, you can fill in the real
logic inside each block as part of iterative
and incremental collaborations.

TBD is consistent with the notion that
software is never finished: there will
always be changes and new functions to be
incorporated into the product. TBD helps
us to think applications and not projects.
This is important, because projects are
disruptions that need to come to an end as
soon as possible, while applications are
long-lived assets, that constantly need to
evolve; applications are never finished,
only retired. Closely related to this are test-
driven development, refactoring and
continuous integration: they are vital and
indispensable aids for the software
craftsman that sees his or her job in
providing ongoing value to users.

User-Centered Interaction Design
“Don’t make me think!”
- Steve Krug

P

roviding value to users is not only
about features. Feature-rich software
seldom offers its users the best

possible value – a sad fact to which many
of today’s shrink-wrapped applications
give a living testimony. In order to provide
value to the user, software developers not
only need to understand the problem
domain and find ways of designing
accurate solutions. Software developers
also must come to understand how users
think about specific domain-problems, they

must get a clear understanding of the users’
mental models.

Any model is an abstraction of reality, it is
based on selective ignorance and it governs
the way we look at things. In software
there are two important models: For one,
there is the user’s mental model, his or her
way of thinking about the problem and its
possible solutions. Furthermore, there is
the implementation model, the actual
technical solution to the user’s problem.
Usually, the two models are quite different.
That is why a domain model that closely

by Sascha Frick © 2005 empros gmbh – all rights reserved. 6 of 9

Some Thoughts On Better Software

matches the user’s mental model is vital to
better software, since it offers the
necessary grounds for successful
collaborations that involve users and
software developers on equal grounds.

Basically, domain-driven design tries to
move the developer closer to the problem
domain. But this is not enough; we must
also find a way to see the application
through the eyes of its specific users. That
is, we have to do user-centered interaction
design. Interaction design approaches the
design of software products with a goal-
directed perspective. It is a synthesis of
traditional design, usability, cognitive
science and software design. In short, it is
about “humane software” that takes into
account the human strengths and
weaknesses to help develop software that
adds value.

A detailed treatment of user-centered
interaction design is beyond the scope of

this paper. Suffice to say that domain-
driven design and user-centered interaction
design are complementary aids. Since most
developers neither are trained interaction
designers nor have the time to become
experts in this field, it pays to have an
interaction designer on your team, at least
if you develop software that requires end-
user interaction. Anyway, it helps to
remember two important rules in
interaction design: First, don’t make the
user think! Second, imagine your user
intelligent, but very busy! So, whenever
you need to decide on a particular solution
that is directly or indirectly revealed to
users of your software, just remind
yourself that users have their own mental
models that you need to understand and
that users do not care about – nor should
they have to – the technical details of your
solution.

Domain-Driven Design and Domain-Specific
Languages

A s mentioned before, domain-driven
design tries to move the developer
closer to the problem domain.

Domain-driven design requires and fosters
the use of a common language – Eric
Evans calls it the ubiquitous language -
that is based on a simple metaphor, deeply
rooted in the subject matter domain.
Ideally, we receive a supple domain model
that is illustrative and concise and that can
be implemented using a general purpose
programming language like Java. The
better our understanding of the problem
domain, the better we can express our
intensions in code. And since code is the
most detailed specification - the only
description of the domain model that
accurately describes the actual system
behavior - expressive code plays an
important role in the development of better
software: Programming by intension, unit
tests that not only assure our code’s correct
functioning but that also document its

correct use, its capabilities and limitations,
and the ability to easily refactor code as
need be, are indispensable elements of
success. But even if you carefully craft
your solutions, using the correct mix of
design patterns, intention revealing
interfaces that are easy to use right; even if
you provide side-effect-free functions,
loosely coupled components, and design
protocols in a “tell, don’t ask”-style, you
encounter a subtle but critical problem: the
mix of subject matter problems and
technical aspects. So, even if you “write it
shy, make it DRY, and tell the other guy”,
you are mixing domain and technical
problems. At first, this doesn’t seem like a
big thing, but the more complex the
problem is, the greater the risk becomes
that we end up with additional, inadvertent
complexity that results from the
intermingling of domain knowledge and
technical aspects.

by Sascha Frick © 2005 empros gmbh – all rights reserved. 7 of 9

Some Thoughts On Better Software

To solve this problem, we need higher
level abstractions to describe solutions for
a specific problem domain; we need
executable models that move us even
closer to the problem domain. We need
Domain-specific Languages that abstract
away from the underlying technical details
by using concepts and terms directly
related to the problem domain. We want to
be able to more directly deal with subject
matter problems. This way, we are able to
ignore all the technical details that are
related to programming in a General
Purpose Language (GPL) like Java. By
avoiding the intermingling of subject
matter problems and technical problems,
we can increase the expressiveness of our
domain models, while keeping the
necessary flexibility on the technical level.
It is important to note that DSLs are not
meant to replace GPLs; they complement
each other. DSLs allow us to be more
abstract and concrete at the same time:
more abstract with regard to the technical
intricacies and more concrete with respect
to the domain problem at hand. GPLs
provide us with the means to lay the
technical foundation by providing the
necessary frameworks and behind-the-
scene implementations.
Domain-driven design using DSLs is not to
be mistaken by model-driven development
as proposed by the OMG in their Model-
Driven Architecture (MDA). Note
especially that we are talking about the use
of DSLs to work closer to the problem
domain. We do not suggest, as many
MDA-proponents do, that we should or
even could model on a higher level of
abstraction simply by using a more abstract
GPL. UML and xUML simply are a golden
hammer that requires you to turn every
problem into a nail.
It is really important to stress that a DSL is
not a full blown programming language, its
purpose and scope are limited to a specific
problem domain, e.g. insurance, credit-

loan handling, machine control software,
etc. As noted before, a DSL allows us to
describe solutions more concrete and more
abstract at the same time by focusing on
domain problems and ignoring the gory
technical details. Those technical details
are still relevant, but their solution should
not “pollute” the domain model, they are
simply part of the technical
implementation. This implementation is a
combination of GPL-code, actively
generated from DSL-based domain
models, framework and library code,
augmented with hand-written GPL-code
that deals with specific aspects that simply
cannot be solved effectively and efficiently
using a DSL. Some applications may also
include DSL-interpreters that are capable
of executing models at application runtime.
A note on code generation: It is an absolute
must that all code generation be active, i.e.
any generated artifact is read-only. It is
absolutely forbidden to hand-change any
generated element. If changes are
necessary, do them in the model from
which the generated artifact originates. It is
crucial that there is one and only one
authoritative source for any change. For
this reason generated artifacts are normally
not put under version control, your domain
models, on the other hand, definitely must.
The higher the complexity of a software
system, the more likely we are going to
need several DSLs to address cross-cutting
concerns. We, therefore, need a Multi-DSL
development platform that allows for the
seamless integration of all relevant
artifacts. At the time of this writing, no
such platform exists, though there are some
promising projects out there. But even
without such an integration platform,
domain-driven design is a viable and
worthwhile step in the right direction. So,
even if using DSLs might not be on your
short-term agenda, domain-driven design
definitely should be.

by Sascha Frick © 2005 empros gmbh – all rights reserved. 8 of 9

Some Thoughts On Better Software

In parting…

T his article touches on many subjects
and much more could and should be
said about each of them. Problem

solving, communication, domain-driven
design, interaction design, DSLs, Test-
driven development, Tracer Bullet
Development, Active Code Generation and
Multi-Level Domain-Integration, all
deserve a more thorough treatment and
articles of their own. I am well aware that
my treatment is more than incomplete.
Therefore, I have put together a list of
further reading that might set you off in the
right direction.

If you have any questions or suggestions,
please do not hesitate to contact me; I am
looking forward to hearing from you.

Resources
• Domain-Driven Design: Eric Evans,

Domain-Driven Design; Tackling
Complexity in the Heart of Software,
Addison Wesley, 2004.

• Tracer Bullet Development: Jared
Richardson & William Gwaltney Jr,
Ship it! A Practical Guide to
Successful Software Projects,
Pragmatic Bookshelf, 2005.

• Interaction Design: Alan Cooper &
Robert Reimann, About Face 2.0 – The
Essentials of Interaction Desgin,
Wiley, 2003.

• Various information in German on
Domain-Driven Design, the use of
Domain Languages, Test-Driven
Development, etc.:
http://www.empros.ch

About the Author
Sascha Frick, born in 1966, is founder and owner of empros gmbh. He has been a software
developer, trainer and coach for more than 17 years. He has written various articles about
and is a regular speaker on the subject of test-driven object-oriented software development.
Under the nom de plume “nemo” he also maintains a weblog
(http://www.empros.ch/nemoslog) where he critically looks into the trade of software
developers.

by Sascha Frick © 2005 empros gmbh – all rights reserved. 9 of 9

http://www.empros.ch/
http://www.empros.ch/nemoslog

	By Sascha Frick, empros gmbh
	Developing Software is Hard
	Programmers are Nerds
	The Heart of Software
	Developing Software is an On-Going Process
	Successful Collaborations
	Tracer Bullet Development
	User-Centered Interaction Design
	Domain-Driven Design and Domain-Specific Languages
	In parting…
	Resources

